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ABSTRACT 

Singulari t ies  on a space with a fixed collection of subspaces  are s tudied.  

Homological  objec ts  for the  s ingular i t ies  are cons t ruc ted .  A Lagrange  

t r ans fo rma t ion  of the  s ingular i t ies  is defined. It is shown tha t  on the  set  

of the  isolated singulari t ies,  the  Lagrange t r ans fo rmat ion  is an  involution 

realizing the  dual i ty  of  corresponding homological objects.  

Introduction 

Two holomorphic germs f,  g: (C ~, 0) ---4 (C, 0) are called equ iva len t  if f o h = 

g for some biholomorphic germ h: (C ~,0) ---4 (C ~,0). A holomorphic germ 

]:  (C ~ • C k, 0) ) (C, 0) is called a s tabi l iza t ion  of f if ] = f + Q, where 

Q: (C k,0) ) (C,0) is a germ of a Morse function. Two holomorphic germs 

f,: (C n',  0) ) (C, 0) are called s table  equiva lent  if some their stabilizations 
are equivalent. 
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Definition: A s ingu la r i t y  is a class of stable equivalent germs at a critical point. 

In this paper, we consider only i so la ted  singularities, i.e. stable equivalence 

classes of functional germs at i so la ted  critical points. 

Additional structures, such as a collection of subspaces of fixed co d im en s io n s ,  

may be incorporated into the definition of a singularity. This is done by allow- 

ing, in the definition of equivalence of germs, only those biholomorphisms which 

preserve the given structure. Moreover, in order to obtain the stabilization as a 

germ on a space with the same structure, we must lift the structure from C ~ to 

C a x C k by multiplication by C k . 

In this setting, the set of the corresponding isolated singularities has some 

symmetry. 

The simplest case is the case of boundary singularities (see [1]), i.e. singularities 

given by germs on a space with some fixed smooth hypersurface called a boundary. 

In [6], to each boundary singularity a decomposition into two (ordinary) sin- 

gularities was associated, and a L a g r a n g e  t r a n s f o r m a t i o n  on the set of the 

boundary singularities was described. In the decomposition of a boundary sin- 

gularity, the first singularity is obtained by neglecting the boundary, the second 

one is the restriction to the boundary. The Lagrange transformation applied to a 

boundary singularity gives a new one having the decomposition which is obtained 

from the original decomposition by the transposition. 

In [11], homological objects associated to a boundary singularity were stud- 

ied. These objects proved to be dual extensions of the corresponding objects 

associated to the singularities of the decomposition. 

In [9], the description of the Lagrange transformation in terms of the duality 

between the homological objects associated to a boundary singularity was con- 

structed. Thus the set of the isolated boundary singularities has the symmetry 

which reflects the duality of the corresponding homological objects. 

In the present paper, we transfer this result to more complicated structures. 

One way to generalize "a space with a boundary" is to consider a space with a 

fixed number of transversal hypersurfaces through the origin, i.e. a space with 

a corner. The c o r n e r  s ingu la r i t i e s  were studied in [101, [5], [7], [12]. Corner 

singularities define some objects in symplectic and contact geometry which gen- 

eralize Lagrange and Legendre submanifolds and arise in different problems of 

wave propagation theory, calculus of variations, mathematical physics etc. (see, 

for example, [4]). 

Another generalization of a boundary singularity is a singularity on a space 

with a flag of subspaces of fixed codimensions. Such flag s ingu la r i t i e s  appear 
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in the study of projections of complete intersections, in the theory of flattening 

of curves; they are closely related to symmetric singularities (see [13], [8]). 

The structure of the paper is the following. In section 1, we recall definitions 

of arrays and homological diagrams (sect. 1.1), and discuss their duality (sect. 
1.2). In section 2, the homological diagrams for singularities are built. We begin 

with an isolated singularity (sect. 2.1), then we consider the case of boundary 

singularities, which are 0-corner singularities in our terminology (sect. 2.2), in 

sect. 2.3 we generalize the construction of sect. 2.2 for a k-corner singularity. 

The homological diagram for a k-corner singularity is described as an extension 
of the homological diagrams of the two (k - 1)-corner singularities which are 

given by the original one. 

Section 3 is devoted to the duality of the k-corner singularities. In sect. 3.1, 

we define Lagrange reflections corresponding to the hyperplanes of the k-corner, 

and describe their action on the decomposition of a k-corner singularity. Then 
in sect. 3.2 we study the Lagrange transformation which is the product of the 

(k + 1) Lagrange reflections (corresponding to all hyperplanes of a k-corner) and 

its action on k-corner singularities. We prove that the homological diagrams of 

a k-corner singularity and its Lagrange transform are dual, up to a shift. 

In the last section, we adapt these methods to flag singularities. We describe 

the Lagrange transformation for this case (sect. 4.1), then we show that the 

Lagrange transformation of flag singularities gives a geometric realization of the 

duality for the homological diagrams associated to the flag singularities (sect. 

4.2). 

1. A r r a y s  and  homolog ica l  d i ag rams  

1.1 ARRAYS. In this section we recall the definition of arrays, and of homolog- 
ical diagrams (see [12]). 

Let C. (resp. C~ be a complex of free Z-modules with differential d of degree 
- 1  (resp. d of degree +1). 

The dual complex of C. (resp. C*), denoted by DC" (resp. DCo), is defined by: 

(DC) p = Homz(Cp, Z), (DC)p = Homz(C p, Z), 

with the differential 0, of degree +1 (resp. c5 of degree -1 ) ,  defined by 

V~ e DCP,Va e Cp+l, (O~o,a) = (-1)P+l(cp, da); 
V~5 e DCp,V8 e C p-l, (b~5, a) = (-1)p+l(~5, d~,). 
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Definition 1.1: A T - a r r a y  is a diagram 7- of the following type: 

C. +2- DC. 

e . + Y - - O C .  

where C is a complex of free Z-modules with differential of degree -1 ,  and e is 

a complex of free Z-modules with differential of degree +1, and v and v* are 

quasi-isomorphisms. 

Tile complexes C, e, DC, DC are called the ver t i ces  of the T-array. The 

morphisms v and v" are called the var ia t ion  m o r p h i s m s  of the T-array. 

From this definition we deduce the definition of two pairings between C and C, 

which make these two complexes dual. The pairings are the Seifert forms of T.  

Namely, for any a �9 Hp(C) and any b �9 HP(e), 

Sl(a,b ) = (var-l(a) ,b) ,  
S2(b,a ) = (var*-l(b),a),  

where var is the morphism induced by v in homologies. 

Let 7- and T '  be two T-arrays. 

Definition 1.2: A m o r p h i s m  of arrays between 7- and 7-' is a pair (a,/~) of 
~ ~ 

morphisms of complexes a: C --+ C' and/3: C' 

diagrams are commutative: 

e such that the following two 

t t )  ~ 

C' ( ~ DC' e +--- DC 
~ ~" ~ ~" 

, o  

C e y-- DC C' v DC' 

i.e. av  = v'/~* and v 'a*  =/}v'*. 

If there exists a morphism of arrays between two T-arrays T and 7-', we have 

the following proposition which gives the link between the Seifert forms of 7- and 

7-'. 

PROPOSITION 1.3: Let (a,~) be a morphism of arrays between 7- and T'. Then 
for any a �9 Hp(C) and any b' �9 HP(C ') 

S , ( a , & ~ , ' ) )  = s ~ ( ~ ( a ) , g , ' ) ,  

si(~',~(a)) : &(a(i/),a). 
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Definition 1.4: Two T-arrays T and T' are isomorphic if there exists a mor- 

phism of arra3~s (c~,/3): T ) T' such that a and ~ are quasi-isomorphisms. 

If two arrays are isomorphic, then Proposition 1.3 implies that the Seifert 

forms of each array are the same through the isomorphism of arrays. So the 

Seifert forms are attached to the equivalence isomorphism class of arrays. This 

leads to the following definition of homological diagrams. 

Definition 1.5: A homological d iagram is an equivalence isomorphism class 

of T-arrays; the Seifert forms associated to a homological diagram are defined by 

the Seifert forms of any of its representatives. It is denoted by 

H.(C.) var Ho( DC) 
19= 

H.(8 ) ,~ar" H~ 

Definition 1.6: A L-array is a diagram T of the following type: 

DC" w C" 

DC. ~') C . 

where C is a complex of Z-modules with differential of degree +1, and C is a 

complex of Z-modules with differential of degree -1, and w and w* are quasi- 

isomorphisms. 

The complexes C, C, DC, DC are called the vertices of the L-array. The 

morphisms w and w" are called the variation morphisms of the Z-array. 

From this definition we deduce the definition of two pairings (the Seifert forms) 

between DC and DC, which make these two complexes dual. 

Namely, for any ] C HP(DC) and any 9 C Hv(DC), 

E1(],9 ) = (war(]),g), 
Z2(9,] ) = (war*(g),]), 

where war is the morphism induced by w in homologies. 

For L-arrays, as well as for T-arrays, morphisms, isomorphisms and cohomo- 

logical diagrams (as isomorphism classes of L-arrays) are defined. 

1.2  DUALITY OF ARRAYS. 

Definition 1.7: The dual of a T-array T, 

C .  ( ~ DC. 

T =  

C" (~" DC" 
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is obtained by taking the duals of each of its vertices, with the dual corresponding 

variation morphisms. It is the following _k-array 7-*: 

DC o ~=v>* C" 

7-* = 

DC. ~*=)~ C. 

Its isomorphism class is a eohomolog ica l  diagram. 

We can now give the definition of "dual" T-arrays. 

Definition 1.8: Two T-arrays T and T '  are dua l  if there exists a pair (a, ~) of 

quasi-isomorphisms of complexes a: DC > C' and ~: C' --+ DC such that  

OL* = V*~V/*. 

In this case, the two homological diagrams associated to T and 7-' are dual. 

If two T-arrays are dual, we get the following equalities for the Seifert forms 

(here E~* denotes the Seifert form of DC'): 

g(a,b) �9 Hp(C) x HP(ff), E~*(a*-l(b),~*(a)) = S2(b,a). 

A similar statement is true for E~* and $1. 

These equalities result from the following commutative diagram, where the 

first and last lines are the T-array 7-, and the two lines in the middle being the 

1-array 7-'*: 

<~* DC 

Vt* ~f 
DC' > 

(T'*) 
DC' ~'> C' 

~'1" ~ 
C < ~ DC. 

2. Homological diagrams of singularities 

A k - c o r n e r  isolated singularity in C n+l is defined by a k -co rne r  ge rm,  i.e. 

by a collection (f,  H1, H 2 , . . . ,  Hk+l), where a holomorphic germ f :  (C n+l , 0) ---+ 

(C, 0) defines an isolated singularity in (C n+l , 0), and each Hi, for 1 < i < k + 1, 

is a hyperplane in C ~+1 such that  for any 1 < il < " "  < it < k + l ,  the restriction 

fl~,l .... n~q = fil...i, is a germ of an isolated singularity in (C ~-l+l ,  0). 
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In this section we construct homological diagrams for singularities. We begin 

with isolated singularities (sect. 2.1). Then we describe the case k = 0 (i.e. a 

boundary singularity) in detail (sect. 2.2), and the homological diagram for a 

corner singularity we get as a generalization of the preceding (sect. 2.3). For this 

construction see [3] and [12]. 

2.1 ISOLATED SINGULARITY. In [12] for any isolated hypersurface singularity 

given by a holomorphic germ f:  (C n+l , 0) ~ (C, 0), an array whose isomorphism 

class is the homological diagram associated to the singularity is constructed. We 

describe it now. 

Let O be a triangulation of the Milnor fiber F of the germ f ,  compatible with 

the boundary OF, and A a barycentric subdivision of O. Let D be the cellular 

decomposition dual for O: if Op is a p-simplex and ap its barycenter, then the 

dual cell for ap is the union of the (2n - p)-simplicies of A which meet Op only 

in ap. 

Let h be the geometric monodromy of f .  

The array T o ( f )  associated to f and O is given by: 

�9 Co, . ( f )  = Ch(~),.(F); 
�9 C~(f)  = Co,2n-.(F),  with the differential c5 induced by 0, the differential 

of Co,.(F); 
�9 the morphism v is the variation morphism which can be described in the 

context of simplicial complexes (see [12]). 

If g: (C q+l , 0) --+ (C, 0) is another representative of the singularity given by 

f ,  then the array associated to g is isomorphic to the array associated to f ,  with 

a shift of n - q. 
The homological diagram associated to the singularity given by f is the iso- 

morphism class of To(f) ;  it is described in degree n (the only interesting degree 

for this representative) by: 

H,~(F) (~r H~(F)  
T)(f) : Hn(F) ~ar* H : ( F )  

where var = var loa  is defined via the Alexander isomorphism a and the variation 

morphism var I of the isolated hypersurface singularity given by the germ f:  

~: U:(F) ) Hn(F, OF); vars: U~(F, OF) ~ Un(F). 

PROPOSITION 2.1: Diagram :D(f) is self-dual. 

Proof: First of all, we note that (DCo(f))q 2n-q o F o =Co,  c ( F ) , w h e r e  = F \ O F .  



84 I. S C H E R B A K  AND A. S Z P IRGLAS Isr. J. Math .  

Denote by T the tubular neighborhood of F ~ which is the union of the A 
2 n - q  o simplicies which meet F ~ Then the Alexander isomorphism maps Co, ~ ( F )  

onto CD,q(T , OT). The Thom-Gysin morphism F (which is a quasi-isomorphism 

in this case) maps Co,q(T, OT) onto CA q(F~ which is isomorphic to Ch(A).q(F~ 
By a composition of these isomorphisms, we get the isomorphism between 

DC(f) and C(f). 
By a similar (inverse) way, we get the isomorphism between C(f) and DC(f). 
From the construction of variation morphism (see [12]), it is clear that the 

required commutation relationship is true. | 

We suppose, for a given k-corner germ (f, H l , . . . , H k + l ) ,  that a Milnor 

fibration compatible with the k-corner is given (see [12]). If F denotes the Milnor 

fiber of f ,  then Fi~...~, = F N Hi~ N. . .  N H,, is the Milnor fiber of f~l ..~. 

In that context, let O be a triangulation of F compatible with OF and any of 

the Fi~...~,, A a barycentric subdivision for O and D the cellular decomposition 

dual for O. 

2.2 BOUNDARY SINGULARITY CASE. In the case k = 0, we have the following 

construction which is based on [3] (see [12]). 

The T-array To(f, H1) is defined by: 

�9 Co,.(I ,  HI) = Co,.(I)  ~3 Co,.-1 (It); 
�9 the differential for Co,~ Ht) is given by: 

O(ao,al) = (Oao + (-1)*at ,Oal);  

�9 C~( f ,H , )  = C~ @C~ -1" 
�9 the differential 0 for C~(f, H1) is given by: 

O(g~o,gZl) = (Oao,Oal + (-1)'r(a0)) ,  

where F is the Thom-Gysin morphism (see [2] and [12]); 

�9 the variation morphisms of To(f, H1) are induced by the variation mor- 

phisms of To(f) and To(f1). 
The homological diagram D(f, H1) associated to the boundary singularity 

(f, H1) is the isomorphism class of To(f, HI). 

We note that: 

1. C(f, H1) (resp. (~(f, H1) ) is the mapping cone of i: C(flnl) ----4 C(f) (resp. 

F: C(f) ) C(flu ' )). 

2. From the definition o f / ) ( f ,  H1), it is possible to show (see [12]) that: 

�9 H'~(do(f, H1)) = H,~(F".FNH1), 
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�9 H,(Co(Y, H1)) = Hn(F, FfhH1), 
the other homology groups involved in the homological diagram being trivial. 

3. There exist two natural morphisms 

6: Co,o_j(fl) ) CO,o(f, H1), - -.-1 &C o (:l) ----+0~(:,H,),  

which define a morphism of arrays To(f, H1) --+ To(f ,)[-1]  (see [12]). Here 
T[-1] denotes the array obtained from T by shifting by -1  the vertices and the 

variation morphisms of T. 

4. There exist two natural morphisms 

7: Co,.(f) ~ Co,.(f, H1), "~: C~9(:,H1) ~ C~(f), 

which define a morphism of arrays To(f)  ~ To(f, H1). 

These morphisms of arrays induce the two exact sequences: 
0 ~ Hn(F) --+ H,,(F, FNH1) ~ H n - l ( F n H l )  ~ O, 
0 e-- Hn(F) +-- H n ( F \ F n H I )  +-- Hn-I(FfqH1) e-- O. 

In such a situation, we say that 79(f, H1) is an ex tens ion  of 79(f) and 79(fl). 

More precisely, we get the following definition of extension of homological 

diagrams. 

Det~nition 2.2: The homological diagram 79 is an ex tens ion  of the two homo- 

logical diagrams 79' and 79", we write 79 = s if there are representatives 

T' ,  T and T"  of respectively 79', 79 and 79" such that there exist: 

�9 a morphism of arrays (a',/3'): 7-' ~ T, 

�9 a morphism of arrays (c~",/}"): 7- > 7-", 
such that Im(o/) C ker(c~"), and Im(/3") C ker(~'). 

From this definition, we get the following proposition: 

PROPOSITION 2.3: 79(f, HI) = g(79(/), 79(fl))- 

2.3 CORNER SINGULARITY CASE. The array To(f, H , , . . . ,  Hk+,) is defined by: 

�9 Co,.(f ,  HI , - - . ,  Hk+t) = Co.~ Co,.-,(f,)~l_<i<2_<k_bl C(9,.--2(fi,3 ) 
~" "" ~Co,~ ..... k+l); 

�9 C~(f, HI , Hk+l) C~(f) ',~i=I _ _ , = o (f,,,)] 

1 ~ " "  ~[CO-<k+I)(/1,2 ..... k+l)]; 
* the differentials for these two complexes are generalizations of the ones 

defined for a boundary singularity; 

�9 the variation morphisms are induced by the variation morphisms of To(f),  

T o ( k ) , . . . ,  Vo(k.2 ..... 
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The d iagram/) ( f ,  H 1 , , . . . ,  Hk+l) associated to (f, H i , , . . . ,  Hk+l) is the isomor- 

phism class of To( f ,  H1 , . . . ,  Hk+l). 

Denote Hil...iz = Hil N ...  n Hit. We get the following proposition which is 

similar to Proposition 2.3. 

PROPOSITION 2.4: 

"D(f, H 1 , . . . ,  Hk+l) = g(V(f,  H i , . . . ,  Hk), 7:)(fk+l, Hi ,k+1, . . . ,  Hk,k+l)). 

The same is true for any permutation on hyperplanes Hi ,.. . ,  Hk+l. 

3. L a g r a n g e  t r a n s f o r m a t i o n s  and  dua l i t y  

3.1 LAGRANGE REFLECTIONS. Here we prove that there is a natural action of 

the group Z2 k+l on the set of the k-corner isolated singularities. The action is 

generated by Lagrange reflections corresponding to the hyperplanes H1,. .  �9 Hk+l 

of the k-corner. In fact, the Lagrange reflections are involutions on the set of the 

k-corner isolated singularities rearranging the singularities of the decomposition. 

These results were announced in [!0]. 

Let ( x l , . . . , X k + l , y l , . . . , y m )  = (x,y), k + m -- n, be coordinates in C n+l 

such that  the hyperplanes of the k-corner are the coordinate hyperplanes Hi -- 

{xi = 0}, i -- 1 , . . . ,  k +  1. In this coordinate system, any k-corner germ f has the 

form f ( x l , . . . ,  xk+l, y). The decomposition of the k-corner singularity consists 

of 2 k+l ordinary singularities. Recall that for a k-corner isolated singularity, all 

the singularities of the decomposition are isolated. 

Notation: To distinguish the k-corner singularity given by f from the ordinary 

one, we write ( f lk)  for the k-corner singularity. 

Definition 3.1: The L a g r a n g e  ref lec t ion /:j in the hyperplane Hj maps the 

k-corner germ ( f lk)  to the new k-corner germ s  = ( f ' i lk) ,  where 

f*J(xl,..., x;,...,  k+l, y, = Zk+l, y) +  jx; 

is defined on C ~+2 with coordinates Xl, . . . ,  x j ,  . . . ,  xk+l, y, xj ,  and the k-corner 

in C n+2 is given by the hyperplanes 

H1 , . . . ,  H i - l ,  H;  = {x; = 0}, H i + l , . . . ,  Hk+l. 

PROPOSITION 3.2 ([10]): 

(i) Any  Lagrange reflection s  1 < j < k + 1, gives a map on the set of 

the k-corner isolated singularities. In other words, if ( f lk)  = (glk), then 

( f ' i l k )  = (g'ilk) for a n y j  = 1 , . . . , k  + 1. 
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(ii) For any 1 < j < k + 1, Lagrange reflection s rearranges the 2 k+l 

singularities of the decomposition of k-corner isolated singularity (flk): 

where ~.~t means stable equivalence of function germs, h~ other words, s 

either adds index j to the subscript (if there is no j )  or removes this index 

from the subscript (if there is index j).  

(iii) Any Lagrange reflection s 1 <_ j < k, is an inwgl~tion on the set of the 

k-corner isolated singularities. In other words, (f[k) -- (s where 

s is the Lagrange reflection in the hyperpfane H;. 

The statement (i) follows from Definition 3.1, the proof of (iii) is similar to the 

proof of Theorem 4.3 (see below), and statement (ii) is based on the following 

lemina. 

LEMMA 3.3: Let g(x, y ] , . . . ,  Ym) = g(x, y) be a holomorphic germ at an isolated 

critical point 0 E C "n+l with critical value O. If g(O, y l , . . . , y m )  = .q(0, y) also 

has an isolated critical point at the origin, then the germs g( O, y) and g( x, y) + xz  

are stable equivalent. 

Proof: We can write g in the form 9(x, y) = g(O, y) + xh(x, y) for some holo- 

morphic germ h. Then we get 

9(X, y l , . . . , y m )  + xz  = g(0, y) + x(z + h) = g(O,y) + zZ,.~st g(O,y), 

where Z = z + h (x , y l , . . . , y , , , ) .  | 

Consider now the group generated by the reflections s . . . . .  /:k+l. Any non- 

unit element of this group has the form 

/:~l...n = s 1 6 3  1 < i l  < - - - < i z < _ k + l .  

This gives the transformation 

X * * E , , . . . , , ( / ) = E , , ( s 1 6 3  i,x,l + . . . +  zi, x~,, 

which is an involution on the set of the k-corner isolated germs. The decompo- 

sition of (E,~...~,(f)]k) is obtained from the decomposition of (f lk) by a permu- 

tation. Thus we get the following result ([10]). 

THEOREM 3.4: The Lagrange reflections {s I <_ j <_ k+ 1 } generate an action 

of the group 7_~ +1 on the set of the k-corner isolated singularities. 
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3 . 2  T H E  ACTION OF THE L A G R A N G E  TRANSFORMATION ON HOMOLOGICAL 

DIAGRAMS. In this section, we study tile product of the Lagrange reflections 

in all the hyperplanes of the k-corner, which is the Lag range  t r a n s f o r m a t i o n  

L -- 121 . . . .  -/2k+l. We prove that the homological diagrams corresponding to 

k-corner singularities (flk) and L(flk) are dual. 

For the Lagrange transformation, the results of sect. 3.1 give the following 

proposition. 

PROPOSITION 3.5: Let (f, H1,. . . ,Hk+l) a n d ( f * , H ~ , . . . , H k + l )  b e a k - c o r n e r  

singularity and its Lagrange transform through L. Then 

f~..z~ ~ t  f l . . . i~ . . . i , . . .k+l '  1 ~ i l  < - - -  < it <_ k W 1. 

Now we can prove that the homological diagrams of a k-corner singularity and 

its Lagrange transform are dual, up to a shift. 

THEOREM 3.6: 

D(f, HI , . . . ,  Hk+l) is dual to D(f*, H i , . . . ,  H•+l)[-1 - k]. 

Proof: Proposition 3.5 implies that there exists an isomorphism of the arrays 

* l T(L,.  ~, ) and T(fl...i,....z,...k+l)[- ] for any 1 <_ i 1 < . . .  < i l < k + 1. The 

isomorphism is induced by the product of successive suspensions, and the trian- 

gulations of the successive Lagrange transforms can be taken as the image by 

these suspensions of the compatible triangulation chosen for (f, Hi , . . . ,  Hk+ 1). 
So, C(f~,...i~ ) is isomorphic to C(f7...h...i,...k+1)[-I ], and by Proposition 2.1 it is 

isomorphic to DC(f;...i,...i,...k+l)[-l]. Also C(fi~...,,) -~ C(f;...i~...~,...k+l)[-l], and 

* - I  by Proposition 2.1 is isomorphic to DC(fl...h...-W..k+I)[ ]. 
Thus we get the required isomorphisms between the vertices of the arrays 

T(f ,  HI , . . . ,  Hk+ 1 ) and DT(f*, H~,. . . , H~+ 1)[-/]. Indeed, the dual of any map- 

ping cone of any qo: C ----+ C' is the mapping cone of ~o*: DC' ~ DC. 
By construction, the commutation relationship for variation morphisms is true. 

| 

4 .  F l a g  s i n g u l a r i t i e s  

This section is devoted to another generalization of boundary singularities, 

namely to the singularities on a complex space with a flag. 

We define flag singularities and describe the Lagrange transformation in this 

case. Then we discuss the homological diagrams of flag singularities and show 
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that the Lagrange transformation of flag singularities gives a geometric realization 

of the duality for the homological diagrams associated to the flag singularities. 

4.1 L A G R A N G E  TRANSFORMATION OF FLAG SINGULARITIES. Consider a com- 

plete flag of complex spaces in C k : 

O c C  1 c C  2 C - . . c C  k- l .  

The direct product with C ~ gives a k-flag 9v~ in Ck+m: 

C m C C  ~ x C  m C . . . C C  k-1 x C  m. 

Let now (C ~, Yk) be a complex space C n with some fixed k-flag 

~ - k = { L  ~ I C . . . C L  k - 1 } C C  ~, 

where d imL i = i + m ,  0 _< i _< k -  1, k +  m, = n. A holomorphic germ 

f:  (C ~, 9vk, O) --~ (C, 0) we call a k-flag germ.  Its stabilization is a k-flag germ 

](x ,  u) = f ( x )  + Q(u)  on a space C ~ x C t with k-flag 

f i - k = { L ' = L ' x C  l, 0 < i < k - 1 } .  

Here x = ( X l , . . .  , Xn) are coordinates in C n, u = ( u l , . . . ,  ul) are coordinates in 

C l, Q is a Morse function. 

Definition 4.1: A k-flag s ingu la r i ty  ( f ,  2Fk) is a k-flag germ at a critical point, 

f: ( c " , T k , o )  ~ (c,o), 

considered up to diffeomorphisms of C n preserving the flag .T'k and up to sta- 

bilizations. A k-flag singularity (f, Jck) is i so la ted  if all germs f , f ,  = f lL ' ,  

0 < i < k - 1 have isolated critical points at O. The set of (ordinary) singu- 

larities ( f 0 , . . . ,  f k - l ,  f )  is called the d e c o m p o s i t i o n  of the k-flag singularity 

(f, Yk). 

Now we define the L a g r a n g e  t r a n s f o r m a t i o n  on the set of k-flag germs. 

For a given k-flag germ (f, hvk), we introduce in C m coordinates x l , . . .  ,xk, 

u j , . . . ,  urn, k + m = n, such that the k-flag -Tk is given by 

�9 ~ k  ---~ {{2:1 • 0} D {Xl ----- X2 : 0} ~ " ' "  ~ {Xl . . . . .  X k  ~- 0 } } .  

Then the L a g r a n g e  t r a n s f o r m  of (f,~-k) is k-flag germ (f*,r where 

f ' ( z ' , : r . u )  = :~z~ + . . .  + z * : k  - : ( z , u )  
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is a germ on C =+k with coordinates x~ , . . . ,  x~, x l , . . . ,  xk, u l , . . . ,  um and k-flag 

:7 = ( ( ~ ;  = 0}  ~ { ~ ;  = x ~ _ l  = 0}  ~ . . .  ~ { ~  . . . . .  x~ = 07}.  

For k-flag singularities, we get the following proposition which is similar to 

Proposition 3.2. 

PROPOSITION 4.2: The Lagrange transformation defines a map on the set of k- 

flag singularities. I f  (f*, 7"~) is the Lagrange transform of the k-flag singularity 

(f ,  .Tk), then f i  ~st  f ; - i ,  0 < i < k. 

The first part of the proposition is a direct consequence of the definitions; the 

second part results from Lemma 3.3. 

THEOREM 4.3: On the set of all isolated k-flag singularities, the Lagrange 

transformation is an involution exchanging the order of the singularities in the 

decomposition. 

Proof: We need to check that k-flag germs (f, bvk) and (f**,:'~*) define the 

same k-flag singularity. We have 

* �9 ** * * *X 
f * * ( X * * , X  , X , U )  = X I**x 1. § "" § X k X k --  x l x l  . . . . .  x k  k + f ( x , u ) .  

Consider k-flag germs f** (x**, x*, x, u) and f(x**, u) on the spaces with coordi- 

nates x**, x*, x, u and x**, u respectively and k-flags given by the same equations 

in these spaces: 

= . * *  = 0}. 

We have to prove that  germs f**(x**, x*, x, u) and f(x**, u) are stable equivalent. 

We get 

f**(x**, x*, x, u) = X*l(X*l* - Xl) §  §  --  Zk) 

+( f (x ,  u) - f(x**, u)) + f(x**, u). 

According to a version of Bdzout theorem, 

f ( X , U )  --  f ( X * * , U )  : ( X l  - -  X ~ * ) r  §  + ( Xk  - -  X*k*)~)k, 

where @, 1 < i < k are some holomorphic germs on x**, x, u. Thus 

f**(x**,x*,x ,u)  - f(x**,u) = (x~* - X l ) ( X ~  - (~1) §  § (2~c* - Xk)(X*k - -  ffgk) 

= X~X~ + ~ . - +  XkX~, 
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whereXi  = x~* - xi, X* = x * - r  i = 1 , . . . , k .  This i s a M o r s e f u n c t i o n i n  
variables X 1 , . . . ,  Xk, X~' , . . . ,  X~. It is clear that the diffeomorphism 

X** ---+ X**, U ~ ~t, X ) X,  x* ~ X* 

preserves the flag. Thus k-flag germs (f**,~**) and (f,~-) define the same flag 

singularities. | 

4.2 DIAGRAMS AND DUALITY FOR FLAG SINGULARITIES. Here, to a n y  k-flag 

singularity we associate a homological diagram. As in the case of the corner 

singularities, we work with a Milnor fibration compatible with the flag. This 

means that if F is the Milnor fiber of f ,  then Fi -- F A L i is the Milnor fiber for 

the singularity fi. 
As in section 1, we choose a triangulation O of F compatible with OF and any 

of the Fi, a barycentric subdivision A for 0 and the cellular decomposition D 

dual for O. 

The T-array To(f,J:k) is defined by: 

�9 CO,.(f,-T'k) = CO, . ( f )  �9 C O , . - l ( f l )  • " "  �9 Co,.-k(fk) with the differential 

(:9(a0,al, . . . ,ak) = (Oao H- ( -1) 'a l ,cgal  + ( - 1 ) ' - l a 2 , . . . , O a k ) ;  

�9 C~(f, S-k) = C~(f) | g~- l ( f l )  O---~)C~-k(fk)  with the differential 

O(ao, a l , ' " ,  5k) = (Oao, Oal + ( - 1 ) ' r ( a o ) , . . . ,  Oak + (--1)'-k+lF(ak-1)), 
where F is the Thom-Gysin morphism; 

�9 the variation morphisms are induced by the variation morphisms of 

To( f ) ,  To( f~) , . . .  ,To(A) .  

Definition 4.4: The homological diagram :D(f,~k) associated to the k-flag 

singularity (f, 9vk) is the isomorphism class of To(f ,  5~k). 

The following proposition describes a k-flag singularity as an extension of an 
ordinary singularity and a (k - 1)-flag singularity. 

PROPOSITION 4.5: 79(f, 5rk) = $(7)(f),  79(fk_l, .T'k_l)), where (k -- 1)-flag 9vk_l 
is obtained from Jz k by deleting L k-1. 

This proposition is a direct consequence of the definitions. 

THEOREM 4.6: I f  k-flag singularity (f*, jr~ ) is the Lagrange transform of( f ,  9vk), 

then the diagrams :D(f, :7:k) and :D(f*, $'~)[-k] are dual. 

Proof: This proof is similar to the proof of Theorem 3.6. Proposition 4.2 implies 

that there is an isomorphism between T(ft)  and T(f~_l)[-I  ]. This induces, via 
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Proposi t ion 2.1, the required isomorphisms,  as the dual of any mapping  cone of 

any ~o: C ~ C' is the mapp ing  cone of ~*: DC t ~ DC. | 
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